Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 10295-10301, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571245

RESUMO

We describe the structure, fabrication, and measured performance of a 1543 nm wavelength photonic crystal surface emitting laser. An asymmetric double lattice design was used to achieve single mode lasing with side mode suppression ratios >40 dB. The photonic crystal was formed using encapsulated air holes in an n-doped InGaAsP layer with an InGaAlAs active layer then grown above it. In this way a laser with a low series resistance of 0.32 Ω capable of pulsed output powers of 171 mW at 25 °C and 40 mW at 85 °C was demonstrated.

2.
ACS Photonics ; 9(4): 1206-1217, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35480493

RESUMO

Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes. We experimentally demonstrate 66.5% solar light absorption in free-standing 1 µm c-Si layers by hyperuniform nanostructuring for the spectral range of 400 to 1050 nm. The absorption equivalent photocurrent derived from our measurements is 26.3 mA/cm2, which is far above the highest found in literature for Si of similar thickness. Considering state-of-the-art Si PV technologies, we estimate that the enhanced light trapping can result in a cell efficiency above 15%. The light absorption can potentially be increased up to 33.8 mA/cm2 by incorporating a back-reflector and improved antireflection, for which we estimate a photovoltaic efficiency above 21% for 1 µm thick Si cells.

3.
Sci Rep ; 7: 41251, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145486

RESUMO

Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with -11 to -13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that -12 brightness meteors can generate audible sound at ~25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.

4.
Nature ; 436(7054): 1132-5, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16121174

RESUMO

Much of the mass of most meteoroids entering the Earth's atmosphere is consumed in the process of ablation. Larger meteoroids (> 10 cm), which in some cases reach the ground as meteorites, typically have survival fractions near 1-25 per cent of their initial mass. The fate of the remaining ablated material is unclear, but theory suggests that much of it should recondense through coagulation as nanometre-sized particles. No direct measurements of such meteoric 'smoke' have hitherto been made. Here we report the disintegration of one of the largest meteoroids to have entered the Earth's atmosphere during the past decade, and show that the dominant contribution to the mass of the residual atmospheric aerosol was in the form of micrometre-sized particles. This result is contrary to the usual view that most of the material in large meteoroids is efficiently converted to particles of much smaller size through ablation. Assuming that our observations are of a typical event, we suggest that large meteoroids provide the dominant source of micrometre-sized meteoritic dust at the Earth's surface over long timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...